Sciweavers

124 search results - page 3 / 25
» Basis function construction for hierarchical reinforcement l...
Sort
View
ICML
2007
IEEE
16 years 1 months ago
Constructing basis functions from directed graphs for value function approximation
Basis functions derived from an undirected graph connecting nearby samples from a Markov decision process (MDP) have proven useful for approximating value functions. The success o...
Jeffrey Johns, Sridhar Mahadevan
ICML
2007
IEEE
16 years 1 months ago
Learning state-action basis functions for hierarchical MDPs
This paper introduces a new approach to actionvalue function approximation by learning basis functions from a spectral decomposition of the state-action manifold. This paper exten...
Sarah Osentoski, Sridhar Mahadevan
AUSAI
2005
Springer
15 years 6 months ago
Global Versus Local Constructive Function Approximation for On-Line Reinforcement Learning
: In order to scale to problems with large or continuous state-spaces, reinforcement learning algorithms need to be combined with function approximation techniques. The majority of...
Peter Vamplew, Robert Ollington
ECML
2004
Springer
15 years 5 months ago
Model Approximation for HEXQ Hierarchical Reinforcement Learning
HEXQ is a reinforcement learning algorithm that discovers hierarchical structure automatically. The generated task hierarchy repthe problem at different levels of abstraction. In ...
Bernhard Hengst