Abstract. In this paper we consider latent variable models and introduce a new U-likelihood concept for estimating the distribution over hidden variables. One can derive an estimat...
JaeMo Sung, Sung Yang Bang, Seungjin Choi, Zoubin ...
In dimensionality reduction approaches, the data are typically embedded in a Euclidean latent space. However for some data sets this is inappropriate. For example, in human motion...
Raquel Urtasun, David J. Fleet, Andreas Geiger, Jo...
We introduce models for density estimation with multiple, hidden, continuous factors. In particular, we propose a generalization of multilinear models using nonlinear basis functi...
Complex networks exist in a wide array of diverse domains, ranging from biology, sociology, and computer science. These real-world networks, while disparate in nature, often compr...
Haizheng Zhang, C. Lee Giles, Henry C. Foley, John...
In this paper, we study probabilistic modeling of heterogeneously attributed multi-dimensional arrays. The model can manage the heterogeneity by employing an individual exponential...