We consider the problem of how to improve the efficiency of Multiple Kernel Learning (MKL). In literature, MKL is often solved by an alternating approach: (1) the minimization of ...
Zenglin Xu, Rong Jin, Haiqin Yang, Irwin King, Mic...
Bayesian Kullback Ying—Yang dependence reduction system and theory is presented. Via stochastic approximation, implementable algorithms and criteria are given for parameter lear...
Real-world relational data are seldom stationary, yet traditional collaborative filtering algorithms generally rely on this assumption. Motivated by our sales prediction problem, ...
Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff Schneide...
: Kriging-based exploration strategies often rely on a single Ordinary Kriging model which parametric covariance kernel is selected a priori or on the basis of an initial data set....
We present a classification algorithm built on our adaptation of the Generalized Lotka-Volterra model, well-known in mathematical ecology. The training algorithm itself consists ...
Karen Hovsepian, Peter Anselmo, Subhasish Mazumdar