Cognitive networking deals with applying cognition to the entire network protocol stack for achieving stack-wide as well as network-wide performance goals, unlike cognitive radios ...
Giorgio Quer, Hemanth Meenakshisundaram, Tamma Bhe...
We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we cal...
David Heckerman, Dan Geiger, David Maxwell Chicker...
Bayesian networks are directed acyclic graphs that represent dependencies between variables in a probabilistic model. Many time series models, including the hidden Markov models (H...
— This paper proposes and experimentally validates a Bayesian network model of a range finder adapted to dynamic environments. The modeling rigorously explains all model assumpt...
Tinne De Laet, Joris De Schutter, Herman Bruyninck...
This article presents and analyzes algorithms that systematically generate random Bayesian networks of varying difficulty levels, with respect to inference using tree clustering. ...