This paper studies a hierarchical Bayesian model for nonlinear hyperspectral image unmixing. The proposed model assumes that the pixel reflectances are polynomial functions of li...
Yoann Altmann, Abderrahim Halimi, Nicolas Dobigeon...
— Intention recognition is an important topic in human-robot cooperation that can be tackled using probabilistic model-based methods. A popular instance of such methods are Bayes...
Oliver C. Schrempf, David Albrecht, Uwe D. Hanebec...
We discuss how to learn non-recursive directed probabilistic logical models from relational data. This problem has been tackled before by upgrading the structure-search algorithm i...
Daan Fierens, Jan Ramon, Maurice Bruynooghe, Hendr...
We combine Bayesian online change point detection with Gaussian processes to create a nonparametric time series model which can handle change points. The model can be used to loca...
Abstract. This paper describes the process by which we are constructing an intelligent tutoring system (ERST) designed to improve learners’ external representation (ER) selection...