In the paper we combine a Bayesian Network model for encoding forensic evidence during a given time interval with a Hidden Markov Model (EBN-HMM) for tracking and predicting the de...
Olivier Y. de Vel, Nianjun Liu, Terry Caelli, Tib&...
We study a stock trading method based on dynamic bayesian networks to model the dynamics of the trend of stock prices. We design a three level hierarchical hidden Markov model (HHM...
Jangmin O, Jae Won Lee, Sung-Bae Park, Byoung-Tak ...
Abstract. Switching linear dynamic systems (SLDS) attempt to describe a complex nonlinear dynamic system with a succession of linear models indexed by a switching variable. Unfortu...
Generalized linear models are the most commonly used tools to describe the stimulus selectivity of sensory neurons. Here we present a Bayesian treatment of such models. Using the ...
Sebastian Gerwinn, Jakob Macke, Matthias Seeger, M...
— In probabilistic mobile robotics, the development of measurement models plays a crucial role as it directly influences the efficiency and the robustness of the robot’s perf...
Christian Plagemann, Kristian Kersting, Patrick Pf...