Traditional n-gram language models are widely used in state-of-the-art large vocabulary speech recognition systems. This simple model suffers from some limitations, such as overfi...
We propose a new statistical method for constructing a genetic network from microarray gene expression data by using a Bayesian network. An essential point of Bayesian network con...
Seiya Imoto, SunYong Kim, Takao Goto, Sachiyo Abur...
When related learning tasks are naturally arranged in a hierarchy, an appealing approach for coping with scarcity of instances is that of transfer learning using a hierarchical Ba...
Gal Elidan, Benjamin Packer, Geremy Heitz, Daphne ...
We propose an unbounded-depth, hierarchical, Bayesian nonparametric model for discrete sequence data. This model can be estimated from a single training sequence, yet shares stati...
Probabilistic latent semantic indexing (PLSI) represents documents of a collection as mixture proportions of latent topics, which are learned from the collection by an expectation...
Alexander Hinneburg, Hans-Henning Gabriel, Andr&eg...