In this paper we address the problem of learning the structure of a Bayesian network in domains with continuous variables. This task requires a procedure for comparing different c...
Cognitive networking deals with applying cognition to the entire network protocol stack for achieving stack-wide as well as network-wide performance goals, unlike cognitive radios ...
Giorgio Quer, Hemanth Meenakshisundaram, Tamma Bhe...
— In this paper, we present an approach allowing a robot to learn a generative model of its own physical body from scratch using self-perception with a single monocular camera. O...
A hybrid Bayesian Network (BN) is one that incorporates both discrete and continuous nodes. In our extensive applications of BNs for system dependability assessment the models are...
Martin Neil, Manesh Tailor, Norman E. Fenton, Davi...
Naive Bayesian classifiers work well in data sets with independent attributes. However, they perform poorly when the attributes are dependent or when there are one or more irrelev...
Miguel A. Palacios-Alonso, Carlos A. Brizuela, Lui...