Sciweavers

75 search results - page 5 / 15
» Boltzmann Machines
Sort
View
ICML
2008
IEEE
15 years 10 months ago
Classification using discriminative restricted Boltzmann machines
Recently, many applications for Restricted Boltzmann Machines (RBMs) have been developed for a large variety of learning problems. However, RBMs are usually used as feature extrac...
Hugo Larochelle, Yoshua Bengio
ICML
2010
IEEE
14 years 10 months ago
Learning Deep Boltzmann Machines using Adaptive MCMC
When modeling high-dimensional richly structured data, it is often the case that the distribution defined by the Deep Boltzmann Machine (DBM) has a rough energy landscape with man...
Ruslan Salakhutdinov
87
Voted
ICML
2010
IEEE
14 years 10 months ago
Rectified Linear Units Improve Restricted Boltzmann Machines
Restricted Boltzmann machines were developed using binary stochastic hidden units. These can be generalized by replacing each binary unit by an infinite number of copies that all ...
Vinod Nair, Geoffrey E. Hinton
ICASSP
2010
IEEE
14 years 9 months ago
Phone recognition using Restricted Boltzmann Machines
For decades, Hidden Markov Models (HMMs) have been the state-of-the-art technique for acoustic modeling despite their unrealistic independence assumptions and the very limited rep...
Abdel-rahman Mohamed, Geoffrey E. Hinton
JMLR
2010
139views more  JMLR 2010»
14 years 4 months ago
Tempered Markov Chain Monte Carlo for training of Restricted Boltzmann Machines
Alternating Gibbs sampling is the most common scheme used for sampling from Restricted Boltzmann Machines (RBM), a crucial component in deep architectures such as Deep Belief Netw...
Guillaume Desjardins, Aaron C. Courville, Yoshua B...