Abstract. In this paper, we propose a novel method for the unsupervised clustering of graphs in the context of the constellation approach to object recognition. Such method is an E...
Boyan Bonev, Francisco Escolano, Miguel Angel Loza...
Recent research in object recognition has demonstrated the advantages of representing objects and scenes through localized patterns such as small image templates. In this paper we...
Attributed graphs are increasingly more common in many application domains such as chemistry, biology and text processing. A central issue in graph mining is how to collect inform...
In this paper, we propose a novel method, called local nonnegative matrix factorization (LNMF), for learning spatially localized, parts-based subspace representation of visual pat...
Stan Z. Li, XinWen Hou, HongJiang Zhang, QianSheng...
Many applications in computer vision and pattern recognition involve drawing inferences on certain manifoldvalued parameters. In order to develop accurate inference algorithms on ...
Pavan K. Turaga, Ashok Veeraraghavan, Rama Chellap...