Sciweavers

124 search results - page 13 / 25
» Bottom-up learning of Markov logic network structure
Sort
View
80
Voted
ICML
2007
IEEE
15 years 10 months ago
Statistical predicate invention
We propose statistical predicate invention as a key problem for statistical relational learning. SPI is the problem of discovering new concepts, properties and relations in struct...
Stanley Kok, Pedro Domingos
ICANN
2010
Springer
14 years 10 months ago
Neuro-symbolic Representation of Logic Programs Defining Infinite Sets
It has been one of the great challenges of neuro-symbolic integration to represent recursive logic programs using neural networks of finite size. In this paper, we propose to imple...
Ekaterina Komendantskaya, Krysia Broda, Artur S. d...
AAAI
2008
14 years 11 months ago
Markov Blanket Feature Selection for Support Vector Machines
Based on Information Theory, optimal feature selection should be carried out by searching Markov blankets. In this paper, we formally analyze the current Markov blanket discovery ...
Jianqiang Shen, Lida Li, Weng-Keen Wong
KDD
2009
ACM
192views Data Mining» more  KDD 2009»
15 years 4 months ago
Primal sparse Max-margin Markov networks
Max-margin Markov networks (M3 N) have shown great promise in structured prediction and relational learning. Due to the KKT conditions, the M3 N enjoys dual sparsity. However, the...
Jun Zhu, Eric P. Xing, Bo Zhang
93
Voted
AUSAI
2006
Springer
15 years 1 months ago
Learning Hybrid Bayesian Networks by MML
Abstract. We use a Markov Chain Monte Carlo (MCMC) MML algorithm to learn hybrid Bayesian networks from observational data. Hybrid networks represent local structure, using conditi...
Rodney T. O'Donnell, Lloyd Allison, Kevin B. Korb