Existing feature extraction methods explore either global statistical or local geometric information underlying the data. In this paper, we propose a general framework to learn fea...
Shuang-Hong Yang, Hongyuan Zha, Shaohua Kevin Zhou...
Real-world datasets exhibit a complex dependency structure among the data attributes. Learning this structure is a key task in automatic statistics configuration for query optimi...
Efficiently detecting outliers or anomalies is an important problem in many areas of science, medicine and information technology. Applications range from data cleaning to clinica...
Matthew Eric Otey, Amol Ghoting, Srinivasan Partha...
Multilingual parallel text corpora provide a powerful means for propagating linguistic knowledge across languages. We present a model which jointly learns linguistic structure for...
The hierarchical Dirichlet process hidden Markov model (HDP-HMM) is a flexible, nonparametric model which allows state spaces of unknown size to be learned from data. We demonstra...
Emily B. Fox, Erik B. Sudderth, Michael I. Jordan,...