Sciweavers

83 search results - page 1 / 17
» Building Useful Models from Imbalanced Data with Sampling an...
Sort
View
94
Voted
FLAIRS
2008
15 years 17 days ago
Building Useful Models from Imbalanced Data with Sampling and Boosting
Building useful classification models can be a challenging endeavor, especially when training data is imbalanced. Class imbalance presents a problem when traditional classificatio...
Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van H...
90
Voted
CSL
2006
Springer
14 years 10 months ago
A study in machine learning from imbalanced data for sentence boundary detection in speech
Enriching speech recognition output with sentence boundaries improves its human readability and enables further processing by downstream language processing modules. We have const...
Yang Liu, Nitesh V. Chawla, Mary P. Harper, Elizab...
97
Voted
FLAIRS
2008
15 years 17 days ago
Selecting Minority Examples from Misclassified Data for Over-Sampling
We introduce a method to deal with the problem of learning from imbalanced data sets, where examples of one class significantly outnumber examples of other classes. Our method sel...
Jorge de la Calleja, Olac Fuentes, Jesús Go...
111
Voted
SIGKDD
2008
150views more  SIGKDD 2008»
14 years 10 months ago
Learning to improve area-under-FROC for imbalanced medical data classification using an ensemble method
This paper presents our solution for KDD Cup 2008 competition that aims at optimizing the area under ROC for breast cancer detection. We exploited weighted-based classification me...
Hung-Yi Lo, Chun-Min Chang, Tsung-Hsien Chiang, Ch...
TNN
2010
127views Management» more  TNN 2010»
14 years 5 months ago
RAMOBoost: ranked minority oversampling in boosting
In recent years, learning from imbalanced data has attracted growing attention from both academia and industry due to the explosive growth of applications that use and produce imba...
Sheng Chen, Haibo He, Edwardo A. Garcia