Sciweavers

111 search results - page 4 / 23
» Causal Graphical Models with Latent Variables: Learning and ...
Sort
View
GRC
2010
IEEE
14 years 10 months ago
Learning Multiple Latent Variables with Self-Organizing Maps
Inference of latent variables from complicated data is one important problem in data mining. The high dimensionality and high complexity of real world data often make accurate infe...
Lili Zhang, Erzsébet Merényi
85
Voted
NIPS
2000
14 years 11 months ago
Structure Learning in Human Causal Induction
We use graphical models to explore the question of how people learn simple causal relationships from data. The two leading psychological theories can both be seen as estimating th...
Joshua B. Tenenbaum, Thomas L. Griffiths
NIPS
1997
14 years 11 months ago
Nonlinear Markov Networks for Continuous Variables
We address the problem of learning structure in nonlinear Markov networks with continuous variables. This can be viewed as non-Gaussian multidimensional density estimation exploit...
Reimar Hofmann, Volker Tresp
66
Voted
ICTAI
2009
IEEE
15 years 4 months ago
EBLearn: Open-Source Energy-Based Learning in C++
Energy-based learning (EBL) is a general framework to describe supervised and unsupervised training methods for probabilistic and non-probabilistic factor graphs. An energy-based ...
Pierre Sermanet, Koray Kavukcuoglu, Yann LeCun
SPEECH
1998
118views more  SPEECH 1998»
14 years 9 months ago
Dimensionality reduction of electropalatographic data using latent variable models
We consider the problem of obtaining a reduced dimension representation of electropalatographic (EPG) data. An unsupervised learning approach based on latent variable modelling is...
Miguel Á. Carreira-Perpiñán, ...