Powerful statistical models that can be learned efficiently from large amounts of data are currently revolutionizing computer vision. These models possess a rich internal structur...
Latent Variable Models (LVM), like the Shared-GPLVM
and the Spectral Latent Variable Model, help mitigate over-
fitting when learning discriminative methods from small or
modera...
We propose a novel method for inferring whether X causes Y or vice versa from joint observations of X and Y . The basic idea is to model the observed data using probabilistic late...
We introduce a new class of probabilistic latent variable model called the Implicit Mixture of Conditional Restricted Boltzmann Machines (imCRBM) for use in human pose tracking. K...
Graham Taylor, Leonid Sigal, David Fleet, Geoffrey...
We propose a probabilistic, generative account of configural learning phenomena in classical conditioning. Configural learning experiments probe how animals discriminate and gener...
Aaron C. Courville, Nathaniel D. Daw, David S. Tou...