Sciweavers

81 search results - page 9 / 17
» Chess Neighborhoods, Function Combination, and Reinforcement...
Sort
View
ECML
2007
Springer
15 years 1 months ago
Efficient Continuous-Time Reinforcement Learning with Adaptive State Graphs
Abstract. We present a new reinforcement learning approach for deterministic continuous control problems in environments with unknown, arbitrary reward functions. The difficulty of...
Gerhard Neumann, Michael Pfeiffer, Wolfgang Maass
WSC
2008
14 years 12 months ago
On step sizes, stochastic shortest paths, and survival probabilities in Reinforcement Learning
Reinforcement Learning (RL) is a simulation-based technique useful in solving Markov decision processes if their transition probabilities are not easily obtainable or if the probl...
Abhijit Gosavi
NN
2007
Springer
105views Neural Networks» more  NN 2007»
14 years 9 months ago
Guiding exploration by pre-existing knowledge without modifying reward
Reinforcement learning is based on exploration of the environment and receiving reward that indicates which actions taken by the agent are good and which ones are bad. In many app...
Kary Främling
75
Voted
NIPS
1994
14 years 11 months ago
Reinforcement Learning with Soft State Aggregation
It is widely accepted that the use of more compact representations than lookup tables is crucial to scaling reinforcement learning (RL) algorithms to real-world problems. Unfortun...
Satinder P. Singh, Tommi Jaakkola, Michael I. Jord...
ECAI
2008
Springer
14 years 11 months ago
Exploiting locality of interactions using a policy-gradient approach in multiagent learning
In this paper, we propose a policy gradient reinforcement learning algorithm to address transition-independent Dec-POMDPs. This approach aims at implicitly exploiting the locality...
Francisco S. Melo