Lack of labeled training examples is a common problem for many applications. In the same time, there is usually an abundance of labeled data from related tasks. But they have diff...
Xiaoxiao Shi, Qi Liu, Wei Fan, Qiang Yang, Philip ...
Analyzing the quality of data prior to constructing data mining models is emerging as an important issue. Algorithms for identifying noise in a given data set can provide a good me...
Jason Van Hulse, Taghi M. Khoshgoftaar, Haiying Hu...
Active learning (AL) is an increasingly popular strategy for mitigating the amount of labeled data required to train classifiers, thereby reducing annotator effort. We describe ...
Byron C. Wallace, Kevin Small, Carla E. Brodley, T...
In this paper, we study the problem of transfer learning from text to images in the context of network data in which link based bridges are available to transfer the knowledge bet...
When given a small sample, we show that classification with SVM can be considerably enhanced by using a kernel function learned from the training data prior to discrimination. Thi...