This paper introduces an approach called Clustering and Co-evolution to Construct Neural Network Ensembles (CONE). This approach creates neural network ensembles in an innovative ...
Abstract. This paper proposes a general framework for classifying data streams by exploiting incremental clustering in order to dynamically build and update an ensemble of incremen...
Ioannis Katakis, Grigorios Tsoumakas, Ioannis P. V...
—In biomedical data, the imbalanced data problem occurs frequently and causes poor prediction performance for minority classes. It is because the trained classifiers are mostly d...
SuperParent-One-Dependence Estimators (SPODEs) loosen Naive-Bayes’ attribute independence assumption by allowing each attribute to depend on a common single attribute (superpare...
Ying Yang, Kevin B. Korb, Kai Ming Ting, Geoffrey ...
Background: Feature selection techniques are critical to the analysis of high dimensional datasets. This is especially true in gene selection from microarray data which are common...
Pengyi Yang, Bing Bing Zhou, Zili Zhang, Albert Y....