Abstract—Linear discriminant analysis (LDA) is a wellknown dimension reduction approach, which projects highdimensional data into a low-dimensional space with the best separation...
Large intersubject variability is a well-described feature of fMRI studies, making inter-group inference, of critical importance for biological interpretation, difficult. Therefor...
Martin J. McKeown, Junning Li, Xuemei Huang, Z. Ja...
Fisher linear discriminant analysis (FLDA) based on variance ratio is compared with scatter linear discriminant (SLDA) analysis based on determinant ratio. It is shown that each o...
Miroslaw Bober, Krzysztof Kucharski, Wladyslaw Ska...
The mixmod (mixture modeling) program fits mixture models to a given data set for the purposes of density estimation, clustering or discriminant analysis. A large variety of algor...
A novel framework called 2D Fisher Discriminant Analysis
(2D-FDA) is proposed to deal with the Small Sample
Size (SSS) problem in conventional One-Dimensional Linear
Discriminan...
Hui Kong, Lei Wang, Eam Khwang Teoh, Jian-Gang Wan...