Sciweavers

86 search results - page 2 / 18
» Clustering and Feature Selection using Sparse Principal Comp...
Sort
View
CORR
2007
Springer
167views Education» more  CORR 2007»
14 years 9 months ago
Optimal Solutions for Sparse Principal Component Analysis
Given a sample covariance matrix, we examine the problem of maximizing the variance explained by a linear combination of the input variables while constraining the number of nonze...
Alexandre d'Aspremont, Francis R. Bach, Laurent El...
SDM
2010
SIAM
168views Data Mining» more  SDM 2010»
14 years 8 months ago
Convex Principal Feature Selection
A popular approach for dimensionality reduction and data analysis is principal component analysis (PCA). A limiting factor with PCA is that it does not inform us on which of the o...
Mahdokht Masaeli, Yan Yan, Ying Cui, Glenn Fung, J...
ICML
2008
IEEE
15 years 10 months ago
Expectation-maximization for sparse and non-negative PCA
We study the problem of finding the dominant eigenvector of the sample covariance matrix, under additional constraints on the vector: a cardinality constraint limits the number of...
Christian D. Sigg, Joachim M. Buhmann
IJON
2006
127views more  IJON 2006»
14 years 9 months ago
Sparse ICA via cluster-wise PCA
In this paper, it is shown that Independent Component Analysis (ICA) of sparse signals (sparse ICA) can be seen as a cluster-wise Principal Component Analysis (PCA). Consequently,...
Massoud Babaie-Zadeh, Christian Jutten, Ali Mansou...
NC
2007
129views Neural Networks» more  NC 2007»
14 years 9 months ago
Sorting of neural spikes: When wavelet based methods outperform principal component analysis
Sorting of the extracellularly recorded spikes is a basic prerequisite for analysis of the cooperative neural behavior and neural code. Fundamentally the sorting performance is deļ...
Alexey N. Pavlov, Valeri A. Makarov, Ioulia Makaro...