Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus s...
Paul Kellam, Stephen Swift, Allan Tucker, Veronica...
Background: In recent years, clustering algorithms have been effectively applied in molecular biology for gene expression data analysis. With the help of clustering algorithms suc...
Yi Lu, Shiyong Lu, Farshad Fotouhi, Youping Deng, ...
The problem of assessing the reliability of clusters patients identified by clustering algorithms is crucial to estimate the significance of subclasses of diseases detectable at b...
The Gene Ontology (GO) is an important knowledge resource for biologists and bioinformaticians. This paper explores the integration of similarity information derived from GO into ...
Haiying Wang, Francisco Azuaje, Olivier Bodenreide...
We propose an unsupervised methodology using independent component analysis (ICA) to cluster genes from DNA microarray data. Based on an ICA mixture model of genomic expression pa...