Background: One of the most commonly performed tasks when analysing high throughput gene expression data is to use clustering methods to classify the data into groups. There are a...
T. Ian Simpson, J. Douglas Armstrong, Andrew P. Ja...
Background: A major goal of computational studies of gene regulation is to accurately predict the expression of genes based on the cis-regulatory content of their promoters. The d...
Background: The learning of global genetic regulatory networks from expression data is a severely under-constrained problem that is aided by reducing the dimensionality of the sea...
Most Gene Regulatory Network (GRN) studies ignore the impact of the noisy nature of gene expression data despite its significant influence upon inferred results. This paper present...
Muhammad Shoaib B. Sehgal, Iqbal Gondal, Laurence ...
We present a probabilistic framework that models the process by which transcriptional binding explains the mRNA expression of different genes. Our joint probabilistic model unifie...
Eran Segal, Yoseph Barash, Itamar Simon, Nir Fried...