Sciweavers

606 search results - page 80 / 122
» Combinatorial Markov Random Fields
Sort
View
UAI
2004
15 years 2 months ago
Iterative Conditional Fitting for Gaussian Ancestral Graph Models
Ancestral graph models, introduced by Richardson and Spirtes (2002), generalize both Markov random fields and Bayesian networks to a class of graphs with a global Markov property ...
Mathias Drton, Thomas S. Richardson
118
Voted
UAI
2004
15 years 2 months ago
Bayesian Learning in Undirected Graphical Models: Approximate MCMC Algorithms
Bayesian learning in undirected graphical models--computing posterior distributions over parameters and predictive quantities-is exceptionally difficult. We conjecture that for ge...
Iain Murray, Zoubin Ghahramani
121
Voted
ICML
2010
IEEE
15 years 1 months ago
Particle Filtered MCMC-MLE with Connections to Contrastive Divergence
Learning undirected graphical models such as Markov random fields is an important machine learning task with applications in many domains. Since it is usually intractable to learn...
Arthur Asuncion, Qiang Liu, Alexander T. Ihler, Pa...
ICCV
2007
IEEE
16 years 2 months ago
Supervised Learning of Image Restoration with Convolutional Networks
Convolutional networks have achieved a great deal of success in high-level vision problems such as object recognition. Here we show that they can also be used as a general method ...
Viren Jain, Joseph F. Murray, Fabian Roth, Sriniva...
CIKM
2008
Springer
15 years 2 months ago
Learning a two-stage SVM/CRF sequence classifier
Learning a sequence classifier means learning to predict a sequence of output tags based on a set of input data items. For example, recognizing that a handwritten word is "ca...
Guilherme Hoefel, Charles Elkan