Many unsupervised learning algorithms make use of kernels that rely on the Euclidean distance between two samples. However, the Euclidean distance is optimal for Gaussian distribut...
Karim T. Abou-Moustafa, Mohak Shah, Fernando De la...
It is generally believed that quadratic discriminant analysis (QDA) can better fit the data in practical pattern recognition applications compared to linear discriminant analysis ...
Jie Wang, Konstantinos N. Plataniotis, Juwei Lu, A...
Kernel-based objective functions optimized using the mean shift algorithm have been demonstrated as an effective means of tracking in video sequences. The resulting algorithms com...
Gregory D. Hager, Maneesh Dewan, Charles V. Stewar...
—We propose an approach for improving object recognition and localization using spatial kernels together with instance embedding. Our approach treats each image as a bag of insta...
Most current methods for multi-class object classification and localization work as independent 1-vs-rest classifiers. They decide whether and where an object is visible in an imag...