Reinforcement learning promises a generic method for adapting agents to arbitrary tasks in arbitrary stochastic environments, but applying it to new real-world problems remains di...
The research reported in this paper is concerned with assessing the usefulness of reinforcment learning (RL) for on-line calibration of parameters in evolutionary algorithms (EA). ...
A. E. Eiben, Mark Horvath, Wojtek Kowalczyk, Marti...
In neuroevolution, a genetic algorithm is used to evolve a neural network to perform a particular task. The standard approach is to evolve a population over a number of generation...
This paper presents CBRetaliate, an agent that combines Case-Based Reasoning (CBR) and Reinforcement Learning (RL) algorithms. Unlike most previous work where RL is used to improve...
Bryan Auslander, Stephen Lee-Urban, Chad Hogg, H&e...
Reminder systems support people with impaired prospective memory and/or executive function, by providing them with reminders of their functional daily activities. We integrate tem...
Matthew R. Rudary, Satinder P. Singh, Martha E. Po...