Statistical topic models provide a general data-driven framework for automated discovery of high-level knowledge from large collections of text documents. While topic models can p...
Chaitanya Chemudugunta, Padhraic Smyth, Mark Steyv...
In this paper we present a novel strategy, DragPushing, for improving the performance of text classifiers. The strategy is generic and takes advantage of training errors to succes...
Songbo Tan, Xueqi Cheng, Moustafa Ghanem, Bin Wang...
In our participation to the 2010 LogCLEF track we focused on the analysis of the European Library (TEL) logs and in particular we experimented with the identification of the natura...
Abstract The explosion of content in distributed information retrieval (IR) systems requires new mechanisms to attain timely and accurate retrieval of unstructured text. In this pa...
We consider the application of machine learning techniques for sequence modeling to Information Retrieval (IR) and surface Information Extraction (IE) tasks. We introduce a generi...
Massih-Reza Amini, Hugo Zaragoza, Patrick Gallinar...