Sciweavers

44 search results - page 2 / 9
» Combining clustering and co-training to enhance text classif...
Sort
View
ICDM
2003
IEEE
210views Data Mining» more  ICDM 2003»
13 years 9 months ago
CBC: Clustering Based Text Classification Requiring Minimal Labeled Data
Semi-supervised learning methods construct classifiers using both labeled and unlabeled training data samples. While unlabeled data samples can help to improve the accuracy of trai...
Hua-Jun Zeng, Xuanhui Wang, Zheng Chen, Hongjun Lu...
AMT
2006
Springer
147views Multimedia» more  AMT 2006»
13 years 8 months ago
Semi-Supervised Text Classification Using Positive and Unlabeled Data
Text classification using positive and unlabeled data refers to the problem of building text classifier using positive documents (P) of one class and unlabeled documents (U) of man...
Shuang Yu, Xueyuan Zhou, Chunping Li
IJCAI
2003
13 years 5 months ago
Learning to Classify Texts Using Positive and Unlabeled Data
In traditional text classification, a classifier is built using labeled training documents of every class. This paper studies a different problem. Given a set P of documents of a ...
Xiaoli Li, Bing Liu
NIPS
2008
13 years 5 months ago
Semi-supervised Learning with Weakly-Related Unlabeled Data: Towards Better Text Categorization
The cluster assumption is exploited by most semi-supervised learning (SSL) methods. However, if the unlabeled data is merely weakly related to the target classes, it becomes quest...
Liu Yang, Rong Jin, Rahul Sukthankar
ML
2000
ACM
124views Machine Learning» more  ML 2000»
13 years 4 months ago
Text Classification from Labeled and Unlabeled Documents using EM
This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. ...
Kamal Nigam, Andrew McCallum, Sebastian Thrun, Tom...