Sciweavers

125 search results - page 1 / 25
» Combining labeled and unlabeled data with word-class distrib...
Sort
View
CIKM
2009
Springer
15 years 7 months ago
Combining labeled and unlabeled data with word-class distribution learning
We describe a novel simple and highly scalable semi-supervised method called Word-Class Distribution Learning (WCDL), and apply it the task of information extraction (IE) by utili...
Yanjun Qi, Ronan Collobert, Pavel Kuksa, Koray Kav...
102
Voted
IJCNLP
2004
Springer
15 years 5 months ago
Combining Labeled and Unlabeled Data for Learning Cross-Document Structural Relationships
Multi-document discourse analysis has emerged with the potential of improving various NLP applications. Based on the newly proposed Cross-document Structure Theory (CST), this pap...
Zhu Zhang, Dragomir R. Radev
100
Voted
ICML
2002
IEEE
16 years 1 months ago
Combining Labeled and Unlabeled Data for MultiClass Text Categorization
Supervised learning techniques for text classi cation often require a large number of labeled examples to learn accurately. One way to reduce the amountoflabeled datarequired is t...
Rayid Ghani
COLT
2005
Springer
15 years 6 months ago
A PAC-Style Model for Learning from Labeled and Unlabeled Data
Abstract. There has been growing interest in practice in using unlabeled data together with labeled data in machine learning, and a number of different approaches have been develo...
Maria-Florina Balcan, Avrim Blum
118
Voted
KDD
2002
ACM
179views Data Mining» more  KDD 2002»
16 years 25 days ago
Combining clustering and co-training to enhance text classification using unlabelled data
In this paper, we present a new co-training strategy that makes use of unlabelled data. It trains two predictors in parallel, with each predictor labelling the unlabelled data for...
Bhavani Raskutti, Herman L. Ferrá, Adam Kow...