Sciweavers

125 search results - page 4 / 25
» Combining labeled and unlabeled data with word-class distrib...
Sort
View
103
Voted
ICDM
2003
IEEE
210views Data Mining» more  ICDM 2003»
15 years 2 months ago
CBC: Clustering Based Text Classification Requiring Minimal Labeled Data
Semi-supervised learning methods construct classifiers using both labeled and unlabeled training data samples. While unlabeled data samples can help to improve the accuracy of trai...
Hua-Jun Zeng, Xuanhui Wang, Zheng Chen, Hongjun Lu...
ML
2000
ACM
124views Machine Learning» more  ML 2000»
14 years 9 months ago
Text Classification from Labeled and Unlabeled Documents using EM
This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. ...
Kamal Nigam, Andrew McCallum, Sebastian Thrun, Tom...
ICDM
2003
IEEE
220views Data Mining» more  ICDM 2003»
15 years 2 months ago
Exploiting Unlabeled Data for Improving Accuracy of Predictive Data Mining
Predictive data mining typically relies on labeled data without exploiting a much larger amount of available unlabeled data. The goal of this paper is to show that using unlabeled...
Kang Peng, Slobodan Vucetic, Bo Han, Hongbo Xie, Z...
89
Voted
ECML
2004
Springer
15 years 3 months ago
Exploiting Unlabeled Data in Content-Based Image Retrieval
Abstract. In this paper, the Ssair (Semi-Supervised Active Image Retrieval) approach, which attempts to exploit unlabeled data to improve the performance of content-based image ret...
Zhi-Hua Zhou, Ke-Jia Chen, Yuan Jiang
COLING
2008
14 years 11 months ago
Homotopy-Based Semi-Supervised Hidden Markov Models for Sequence Labeling
This paper explores the use of the homotopy method for training a semi-supervised Hidden Markov Model (HMM) used for sequence labeling. We provide a novel polynomial-time algorith...
Gholamreza Haffari, Anoop Sarkar