The decision tree is one of the most fundamental ing abstractions. A commonly used type of decision tree is the alphabetic binary tree, which uses (without loss of generality) &quo...
Decentralized partially observable Markov decision processes (Dec-POMDPs) constitute a generic and expressive framework for multiagent planning under uncertainty. However, plannin...
Frans A. Oliehoek, Shimon Whiteson, Matthijs T. J....
Current studies have demonstrated that the representational power of predictive state representations (PSRs) is at least equal to the one of partially observable Markov decision p...
Abdeslam Boularias, Masoumeh T. Izadi, Brahim Chai...
Bayesian Reinforcement Learning has generated substantial interest recently, as it provides an elegant solution to the exploration-exploitation trade-off in reinforcement learning...
We propose a novel approach to optimize Partially Observable Markov Decisions Processes (POMDPs) defined on continuous spaces. To date, most algorithms for model-based POMDPs are ...
Josep M. Porta, Nikos A. Vlassis, Matthijs T. J. S...