Sciweavers

509 search results - page 18 / 102
» Compositional Models for Reinforcement Learning
Sort
View
ICML
2001
IEEE
16 years 15 days ago
Continuous-Time Hierarchical Reinforcement Learning
Hierarchical reinforcement learning (RL) is a general framework which studies how to exploit the structure of actions and tasks to accelerate policy learning in large domains. Pri...
Mohammad Ghavamzadeh, Sridhar Mahadevan
ATAL
2006
Springer
15 years 3 months ago
A hierarchical approach to efficient reinforcement learning in deterministic domains
Factored representations, model-based learning, and hierarchies are well-studied techniques for improving the learning efficiency of reinforcement-learning algorithms in large-sca...
Carlos Diuk, Alexander L. Strehl, Michael L. Littm...
NIPS
2001
15 years 1 months ago
The Steering Approach for Multi-Criteria Reinforcement Learning
We consider the problem of learning to attain multiple goals in a dynamic environment, which is initially unknown. In addition, the environment may contain arbitrarily varying ele...
Shie Mannor, Nahum Shimkin
COLT
2000
Springer
15 years 4 months ago
Estimation and Approximation Bounds for Gradient-Based Reinforcement Learning
We model reinforcement learning as the problem of learning to control a Partially Observable Markov Decision Process (  ¢¡¤£¦¥§  ), and focus on gradient ascent approache...
Peter L. Bartlett, Jonathan Baxter
AAAI
2011
13 years 11 months ago
Coordinated Multi-Agent Reinforcement Learning in Networked Distributed POMDPs
In many multi-agent applications such as distributed sensor nets, a network of agents act collaboratively under uncertainty and local interactions. Networked Distributed POMDP (ND...
Chongjie Zhang, Victor R. Lesser