Recent work has demonstrated that using a carefully designed sensing matrix rather than a random one, can improve the performance of compressed sensing. In particular, a welldesign...
Kevin Rosenblum, Lihi Zelnik-Manor, Yonina C. Elda...
Compressed Imaging is the theory that studies the problem of image recovery from an under-determined system of linear measurements. One of the most popular methods in this field i...
Serge L. Shishkin, Hongcheng Wang, Gregory S. Hage...
Motivated by applications like elections, web-page ranking, revenue maximization etc., we consider the question of inferring popular rankings using constrained data. More specific...
Compressed sensing, an emerging multidisciplinary field involving mathematics, probability, optimization, and signal processing, focuses on reconstructing an unknown signal from a...
Shiqian Ma, Wotao Yin, Yin Zhang, Amit Chakraborty
Radio Frequency (RF) tomography refers to the process of inferring information about an environment by capturing and analyzing RF signals transmitted between nodes in a wireless se...