The Expectation Maximization (EM) algorithm is widely used for learning finite mixture models despite its greedy nature. Most popular model-based clustering techniques might yield...
Chandan K. Reddy, Hsiao-Dong Chiang, Bala Rajaratn...
Recently there has been significant interest in employing probabilistic techniques for fault localization. Using dynamic dependence information for multiple passing runs, learnin...
Context-aware computing describes the situation where a wearable / mobile computer is aware of its user’s state and surroundings and modifies its behavior based on this informat...
Andreas Krause, Daniel P. Siewiorek, Asim Smailagi...
Computing semantic relatedness of natural language texts requires access to vast amounts of common-sense and domain-specific world knowledge. We propose Explicit Semantic Analysi...
Sparsity-promoting L1-regularization has recently been succesfully used to learn the structure of undirected graphical models. In this paper, we apply this technique to learn the ...
Mark W. Schmidt, Alexandru Niculescu-Mizil, Kevin ...