Sciweavers

495 search results - page 6 / 99
» Constructing States for Reinforcement Learning
Sort
View
AAMAS
2002
Springer
14 years 11 months ago
Relational Reinforcement Learning for Agents in Worlds with Objects
In reinforcement learning, an agent tries to learn a policy, i.e., how to select an action in a given state of the environment, so that it maximizes the total amount of reward it ...
Saso Dzeroski
ICML
1996
IEEE
15 years 3 months ago
A Convergent Reinforcement Learning Algorithm in the Continuous Case: The Finite-Element Reinforcement Learning
This paper presents a direct reinforcement learning algorithm, called Finite-Element Reinforcement Learning, in the continuous case, i.e. continuous state-space and time. The eval...
Rémi Munos
ICMLA
2008
15 years 1 months ago
Basis Function Construction in Reinforcement Learning Using Cascade-Correlation Learning Architecture
In reinforcement learning, it is a common practice to map the state(-action) space to a different one using basis functions. This transformation aims to represent the input data i...
Sertan Girgin, Philippe Preux
ICML
2000
IEEE
16 years 13 days ago
Combining Reinforcement Learning with a Local Control Algorithm
We explore combining reinforcement learning with a hand-crafted local controller in a manner suggested by the chaotic control algorithm of Vincent, Schmitt and Vincent (1994). A c...
Andrew G. Barto, Jette Randløv, Michael T. ...
AUSAI
2005
Springer
15 years 5 months ago
Global Versus Local Constructive Function Approximation for On-Line Reinforcement Learning
: In order to scale to problems with large or continuous state-spaces, reinforcement learning algorithms need to be combined with function approximation techniques. The majority of...
Peter Vamplew, Robert Ollington