Sciweavers

161 search results - page 13 / 33
» Convergence Problems of General-Sum Multiagent Reinforcement...
Sort
View
ICML
2007
IEEE
16 years 15 days ago
Conditional random fields for multi-agent reinforcement learning
Conditional random fields (CRFs) are graphical models for modeling the probability of labels given the observations. They have traditionally been trained with using a set of obser...
Xinhua Zhang, Douglas Aberdeen, S. V. N. Vishwanat...
JMLR
2006
153views more  JMLR 2006»
14 years 11 months ago
Collaborative Multiagent Reinforcement Learning by Payoff Propagation
In this article we describe a set of scalable techniques for learning the behavior of a group of agents in a collaborative multiagent setting. As a basis we use the framework of c...
Jelle R. Kok, Nikos A. Vlassis
NIPS
1998
15 years 1 months ago
Gradient Descent for General Reinforcement Learning
A simple learning rule is derived, the VAPS algorithm, which can be instantiated to generate a wide range of new reinforcementlearning algorithms. These algorithms solve a number ...
Leemon C. Baird III, Andrew W. Moore
ICML
1998
IEEE
16 years 15 days ago
The MAXQ Method for Hierarchical Reinforcement Learning
This paper presents a new approach to hierarchical reinforcement learning based on the MAXQ decomposition of the value function. The MAXQ decomposition has both a procedural seman...
Thomas G. Dietterich
COLT
2000
Springer
15 years 4 months ago
Estimation and Approximation Bounds for Gradient-Based Reinforcement Learning
We model reinforcement learning as the problem of learning to control a Partially Observable Markov Decision Process (  ¢¡¤£¦¥§  ), and focus on gradient ascent approache...
Peter L. Bartlett, Jonathan Baxter