Sciweavers

161 search results - page 13 / 33
» Convergence Problems of General-Sum Multiagent Reinforcement...
Sort
View
ICML
2007
IEEE
15 years 10 months ago
Conditional random fields for multi-agent reinforcement learning
Conditional random fields (CRFs) are graphical models for modeling the probability of labels given the observations. They have traditionally been trained with using a set of obser...
Xinhua Zhang, Douglas Aberdeen, S. V. N. Vishwanat...
JMLR
2006
153views more  JMLR 2006»
14 years 9 months ago
Collaborative Multiagent Reinforcement Learning by Payoff Propagation
In this article we describe a set of scalable techniques for learning the behavior of a group of agents in a collaborative multiagent setting. As a basis we use the framework of c...
Jelle R. Kok, Nikos A. Vlassis
NIPS
1998
14 years 11 months ago
Gradient Descent for General Reinforcement Learning
A simple learning rule is derived, the VAPS algorithm, which can be instantiated to generate a wide range of new reinforcementlearning algorithms. These algorithms solve a number ...
Leemon C. Baird III, Andrew W. Moore
ICML
1998
IEEE
15 years 10 months ago
The MAXQ Method for Hierarchical Reinforcement Learning
This paper presents a new approach to hierarchical reinforcement learning based on the MAXQ decomposition of the value function. The MAXQ decomposition has both a procedural seman...
Thomas G. Dietterich
COLT
2000
Springer
15 years 2 months ago
Estimation and Approximation Bounds for Gradient-Based Reinforcement Learning
We model reinforcement learning as the problem of learning to control a Partially Observable Markov Decision Process (  ¢¡¤£¦¥§  ), and focus on gradient ascent approache...
Peter L. Bartlett, Jonathan Baxter