We consider the problem of multi-task reinforcement learning, where the agent needs to solve a sequence of Markov Decision Processes (MDPs) chosen randomly from a fixed but unknow...
Aaron Wilson, Alan Fern, Soumya Ray, Prasad Tadepa...
The existing reinforcement learning approaches have been suffering from the curse of dimension problem when they are applied to multiagent dynamic environments. One of the typical...
Closed-loop control relies on sensory feedback that is usually assumed to be free. But if sensing incurs a cost, it may be coste ective to take sequences of actions in open-loop m...
Eric A. Hansen, Andrew G. Barto, Shlomo Zilberstei...
To accelerate the learning of reinforcement learning, many types of function approximation are used to represent state value. However function approximation reduces the accuracy o...
It is widely accepted that the use of more compact representations than lookup tables is crucial to scaling reinforcement learning (RL) algorithms to real-world problems. Unfortun...
Satinder P. Singh, Tommi Jaakkola, Michael I. Jord...