Sciweavers

50 search results - page 4 / 10
» Convergence and Divergence in Standard and Averaging Reinfor...
Sort
View
CORR
2007
Springer
73views Education» more  CORR 2007»
15 years 1 months ago
Universal Reinforcement Learning
—We consider an agent interacting with an unmodeled environment. At each time, the agent makes an observation, takes an action, and incurs a cost. Its actions can influence futu...
Vivek F. Farias, Ciamac Cyrus Moallemi, Tsachy Wei...
ICML
2000
IEEE
16 years 2 months ago
Reinforcement Learning in POMDP's via Direct Gradient Ascent
This paper discusses theoretical and experimental aspects of gradient-based approaches to the direct optimization of policy performance in controlled ??? ?s. We introduce ??? ?, a...
Jonathan Baxter, Peter L. Bartlett
ICML
2001
IEEE
16 years 2 months ago
Off-Policy Temporal Difference Learning with Function Approximation
We introduce the first algorithm for off-policy temporal-difference learning that is stable with linear function approximation. Off-policy learning is of interest because it forms...
Doina Precup, Richard S. Sutton, Sanjoy Dasgupta
JMLR
2010
119views more  JMLR 2010»
14 years 8 months ago
A Convergent Online Single Time Scale Actor Critic Algorithm
Actor-Critic based approaches were among the first to address reinforcement learning in a general setting. Recently, these algorithms have gained renewed interest due to their gen...
Dotan Di Castro, Ron Meir
WSC
2008
15 years 3 months ago
On step sizes, stochastic shortest paths, and survival probabilities in Reinforcement Learning
Reinforcement Learning (RL) is a simulation-based technique useful in solving Markov decision processes if their transition probabilities are not easily obtainable or if the probl...
Abhijit Gosavi