This paper demonstrates the applicability of reinforcement learning for first person shooter bot artificial intelligence. Reinforcement learning is a machine learning technique wh...
This paper investigates a novel model-free reinforcement learning architecture, the Natural Actor-Critic. The actor updates are based on stochastic policy gradients employing Amari...
We propose a modular reinforcement learning architecture for non-linear, nonstationary control tasks, which we call multiple model-based reinforcement learning (MMRL). The basic i...
A gradient-based method for both symmetric and asymmetric multiagent reinforcement learning is introduced in this paper. Symmetric multiagent reinforcement learning addresses the ...
For this special session of EU projects in the area of NeuroIT, we will review the progress of the MirrorBot project with special emphasis on its relation to reinforcement learning...
Cornelius Weber, David Muse, Mark Elshaw, Stefan W...