We consider the problem of binary classification where the classifier may abstain instead of classifying each observation. The Bayes decision rule for this setup, known as Chow...
Yves Grandvalet, Alain Rakotomamonjy, Joseph Keshe...
This paper presents a novel method for DNA microarray gridding based on Support Vector Machine (SVM) classifiers. It employs a set of soft-margin SVMs to estimate the lines of the ...
Dimitris G. Bariamis, Dimitris Maroulis, Dimitrios...
The kernel-parameter is one of the few tunable parameters in Support Vector machines, controlling the complexity of the resulting hypothesis. Its choice amounts to model selection...
Nello Cristianini, Colin Campbell, John Shawe-Tayl...
This paper presents a supervised approach for relation extraction. We apply Support Vector Machines to detect and classify the relations in Automatic Content Extraction (ACE) corpu...
This paper investigates the use of a one-class support vector machine algorithm to detect the onset of system anomalies, and trend output classification probabilities, as a way to ...