Using decision trees that split on randomly selected attributes is one way to increase the diversity within an ensemble of decision trees. Another approach increases diversity by ...
Michael Gashler, Christophe G. Giraud-Carrier, Ton...
Abstract. We give a (ln n + 1)-approximation for the decision tree (DT) problem. An instance of DT is a set of m binary tests T = (T1, . . . , Tm) and a set of n items X = (X1, . ....
We introduce a novel algorithm for decision tree learning in the multi-instance setting as originally defined by Dietterich et al. It differs from existing multi-instance tree lea...
This paper extends previous work on skewing, an approach to problematic functions in decision tree induction. The previous algorithms were applicable only to functions of binary v...
In this paper, we describe a new system for converting a user's freehand sketch of a tree into a full 3D model that is both complex and realistic-looking. Our system does thi...
Xuejin Chen, Boris Neubert, Ying-Qing Xu, Oliver D...