Sciweavers

784 search results - page 72 / 157
» Diffeomorphic Dimensionality Reduction
Sort
View
IJCAI
2007
15 years 1 months ago
Improving Embeddings by Flexible Exploitation of Side Information
Dimensionality reduction is a much-studied task in machine learning in which high-dimensional data is mapped, possibly via a non-linear transformation, onto a low-dimensional mani...
Ali Ghodsi, Dana F. Wilkinson, Finnegan Southey
NIPS
2004
15 years 1 months ago
Kernel Projection Machine: a New Tool for Pattern Recognition
This paper investigates the effect of Kernel Principal Component Analysis (KPCA) within the classification framework, essentially the regularization properties of this dimensional...
Laurent Zwald, Régis Vert, Gilles Blanchard...
NIPS
1997
15 years 1 months ago
Mapping a Manifold of Perceptual Observations
Nonlinear dimensionality reduction is formulated here as the problem of trying to find a Euclidean feature-space embedding of a set of observations that preserves as closely as p...
Joshua B. Tenenbaum
CORR
2010
Springer
92views Education» more  CORR 2010»
14 years 10 months ago
Random Projections for $k$-means Clustering
This paper discusses the topic of dimensionality reduction for k-means clustering. We prove that any set of n points in d dimensions (rows in a matrix A ∈ Rn×d ) can be project...
Christos Boutsidis, Anastasios Zouzias, Petros Dri...
AMC
2011
14 years 3 months ago
Large correlation analysis
:In this paper, a novel supervised dimensionality reduction method is developed based on both the correlation analysis and the idea of large margin learning. The method aims to m...
Xiaohong Chen, Songcan Chen, Hui Xue