It is well-known that for high dimensional data clustering, standard algorithms such as EM and the K-means are often trapped in local minimum. Many initialization methods were pro...
Chris H. Q. Ding, Xiaofeng He, Hongyuan Zha, Horst...
Background: Recent advances in proteomics technologies such as SELDI-TOF mass spectrometry has shown promise in the detection of early stage cancers. However, dimensionality reduc...
Kai-Lin Tang, Tong-Hua Li, Wen-Wei Xiong, Kai Chen
Text documents are complex high dimensional objects. To effectively visualize such data it is important to reduce its dimensionality and visualize the low dimensional embedding as...
In this paper, a new kernel-based method for data visualization and dimensionality reduction is proposed. A reference point is considered corresponding to additional constraints ta...
Abstract--Large high dimension datasets are of growing importance in many fields and it is important to be able to visualize them for understanding the results of data mining appro...
Jong Youl Choi, Seung-Hee Bae, Xiaohong Qiu, Geoff...