Dimensionality reduction is a statistical tool commonly used to map high-dimensional data into lower a dimensionality. The transformed data is typically more suitable for regressi...
Bill Kapralos, Nathan Mekuz, Agnieszka Kopinska, S...
Abstract. There has been growing interest in developing nonlinear dimensionality reduction algorithms for vision applications. Although progress has been made in recent years, conv...
Spectral classification, segmentation and data reduction are the three main problems in hyperspectral image analysis. In this paper we propose a Bayesian estimation approach which ...
Nadia Bali, Ali Mohammad-Djafari, Adel Mohammadpou...
Random projection (RP) is a common technique for dimensionality reduction under L2 norm for which many significant space embedding results have been demonstrated. In particular, r...
We consider the problem of image representation and clustering. Traditionally, an n1 × n2 image is represented by a vector in the Euclidean space Rn1×n2 . Some learning algorith...