Sciweavers

87 search results - page 14 / 18
» Direct Policy Search Reinforcement Learning for Robot Contro...
Sort
View
88
Voted
AGENTS
1999
Springer
15 years 3 months ago
Team-Partitioned, Opaque-Transition Reinforcement Learning
In this paper, we present a novel multi-agent learning paradigm called team-partitioned, opaque-transition reinforcement learning (TPOT-RL). TPOT-RL introduces the concept of usin...
Peter Stone, Manuela M. Veloso
87
Voted
SMC
2007
IEEE
102views Control Systems» more  SMC 2007»
15 years 5 months ago
An improved immune Q-learning algorithm
—Reinforcement learning is a framework in which an agent can learn behavior without knowledge on a task or an environment by exploration and exploitation. Striking a balance betw...
Zhengqiao Ji, Q. M. Jonathan Wu, Maher A. Sid-Ahme...
ISCAS
2006
IEEE
103views Hardware» more  ISCAS 2006»
15 years 5 months ago
Towards autonomous adaptive behavior in a bio-inspired CNN-controlled robot
— This paper describes a general approach for the unsupervised learning of behaviors in a behavior-based robot. The key idea is to formalize a behavior produced by a Motor Map dr...
Paolo Arena, Luigi Fortuna, Mattia Frasca, Luca Pa...
ICANN
2010
Springer
15 years 21 days ago
Exploring Continuous Action Spaces with Diffusion Trees for Reinforcement Learning
We propose a new approach for reinforcement learning in problems with continuous actions. Actions are sampled by means of a diffusion tree, which generates samples in the continuou...
Christian Vollmer, Erik Schaffernicht, Horst-Micha...
ATAL
2007
Springer
15 years 5 months ago
Batch reinforcement learning in a complex domain
Temporal difference reinforcement learning algorithms are perfectly suited to autonomous agents because they learn directly from an agent’s experience based on sequential actio...
Shivaram Kalyanakrishnan, Peter Stone