Sciweavers

16 search results - page 1 / 4
» Direct importance estimation with probabilistic principal co...
Sort
View
ICASSP
2010
IEEE
14 years 9 months ago
Direct importance estimation with probabilistic principal component analyzers
The importance estimation problem (estimating the ratio of two probability density functions) has recently gathered a great deal of attention for use in various applications, e.g....
Makoto Yamada, Masashi Sugiyama, Gordon Wichern
73
Voted
IEICET
2010
132views more  IEICET 2010»
14 years 8 months ago
Direct Importance Estimation with a Mixture of Probabilistic Principal Component Analyzers
Estimating the ratio of two probability density functions (a.k.a. the importance) has recently gathered a great deal of attention since importance estimators can be used for solvi...
Makoto Yamada, Masashi Sugiyama, Gordon Wichern, J...
ESANN
2007
14 years 11 months ago
Mixtures of robust probabilistic principal component analyzers
Mixtures of probabilistic principal component analyzers model high-dimensional nonlinear data by combining local linear models. Each mixture component is specifically designed to...
Cédric Archambeau, Nicolas Delannay, Michel...
97
Voted
BMCBI
2010
113views more  BMCBI 2010»
14 years 9 months ago
Probabilistic Principal Component Analysis for Metabolomic Data
Background: Data from metabolomic studies are typically complex and high-dimensional. Principal component analysis (PCA) is currently the most widely used statistical technique fo...
Gift Nyamundanda, Lorraine Brennan, Isobel Claire ...
CSDA
2006
304views more  CSDA 2006»
14 years 9 months ago
Using principal components for estimating logistic regression with high-dimensional multicollinear data
The logistic regression model is used to predict a binary response variable in terms of a set of explicative ones. The estimation of the model parameters is not too accurate and t...
Ana M. Aguilera, Manuel Escabias, Mariano J. Valde...