Sciweavers

161 search results - page 7 / 33
» Dirichlet process mixture models with multiple modalities
Sort
View
ICML
2004
IEEE
15 years 10 months ago
Variational methods for the Dirichlet process
Variational inference methods, including mean field methods and loopy belief propagation, have been widely used for approximate probabilistic inference in graphical models. While ...
David M. Blei, Michael I. Jordan
ICML
2010
IEEE
14 years 10 months ago
The IBP Compound Dirichlet Process and its Application to Focused Topic Modeling
The hierarchical Dirichlet process (HDP) is a Bayesian nonparametric mixed membership model--each data point is modeled with a collection of components of different proportions. T...
Sinead Williamson, Chong Wang, Katherine A. Heller...
NIPS
2001
14 years 11 months ago
Infinite Mixtures of Gaussian Process Experts
We present an extension to the Mixture of Experts (ME) model, where the individual experts are Gaussian Process (GP) regression models. Using an input-dependent adaptation of the ...
Carl Edward Rasmussen, Zoubin Ghahramani
56
Voted
ICML
2008
IEEE
15 years 10 months ago
The dynamic hierarchical Dirichlet process
The dynamic hierarchical Dirichlet process (dHDP) is developed to model the timeevolving statistical properties of sequential data sets. The data collected at any time point are r...
Lu Ren, David B. Dunson, Lawrence Carin
ICASSP
2011
IEEE
14 years 1 months ago
On selecting the hyperparameters of the DPM models for the density estimation of observation errors
The Dirichlet Process Mixture (DPM) models represent an attractive approach to modeling latent distributions parametrically. In DPM models the Dirichlet process (DP) is applied es...
Asma Rabaoui, Nicolas Viandier, Juliette Marais, E...