This paper presents a new statistical model for detecting and tracking deformable objects such as pedestrians, where large shape variations induced by local shape deformation can ...
While discriminative training (e.g., CRF, structural SVM) holds much promise for machine translation, image segmentation, and clustering, the complex inference these applications ...
Autonomous mobile robots need to adapt their behavior to the terrain over which they drive, and to predict the traversability of the terrain so that they can effectively plan thei...
Michael Shneier, Tommy Chang, Tsai Hong, William P...
Using a lexicon can often improve character recognition under challenging conditions, such as poor image quality or unusual fonts. We propose a flexible probabilistic model for c...
Jerod J. Weinman, Erik G. Learned-Miller, Allen R....
In this paper, we present a learning procedure called probabilistic boosting network (PBN) for joint real-time object detection and pose estimation. Grounded on the law of total p...
Jingdan Zhang, Shaohua Kevin Zhou, Leonard McMilla...