The hierarchical Dirichlet process hidden Markov model (HDP-HMM) is a flexible, nonparametric model which allows state spaces of unknown size to be learned from data. We demonstra...
Emily B. Fox, Erik B. Sudderth, Michael I. Jordan,...
In this study, we propose a new machine learning model namely, Adaptive Locality-Effective Kernel Machine (Adaptive-LEKM) for protein phosphorylation site prediction. Adaptive-LEK...
Paul D. Yoo, Yung Shwen Ho, Bing Bing Zhou, Albert...
When correct priors are known, Bayesian algorithms give optimal decisions, and accurate confidence values for predictions can be obtained. If the prior is incorrect however, these...
Thomas Melluish, Craig Saunders, Ilia Nouretdinov,...
We investigate the computational complexity of the task of detecting dense regions of an unknown distribution from un-labeled samples of this distribution. We introduce a formal l...
Much research has been devoted to the study of exclusively distance-learning paradigms for teaching various technological subjects, yet many students have not been satisfied with ...