Conditional Random Field models have proved effective for several low-level computer vision problems. Inference in these models involves solving a combinatorial optimization probl...
One of the most exciting advances in early vision has been the development of efficient energy minimization algorithms. Many early vision tasks require labeling each pixel with som...
Richard Szeliski, Ramin Zabih, Daniel Scharstein, ...
Among the most exciting advances in early vision has been the development of efficient energy minimization algorithms for pixel-labeling tasks such as depth or texture computation....
Richard Szeliski, Ramin Zabih, Daniel Scharstein, ...
We propose an algorithm for estimating disparity and occlusion in stereo video sequences. The algorithm defines a prior on sequences of disparity maps using a 3D Markov random fie...
Oliver M. C. Williams, Michael Isard, John MacCorm...
Loopy and generalized belief propagation are popular algorithms for approximate inference in Markov random fields and Bayesian networks. Fixed points of these algorithms have been...