Sciweavers

3412 search results - page 29 / 683
» Efficient Reinforcement Learning
Sort
View
117
Voted
NIPS
1994
15 years 2 months ago
Finding Structure in Reinforcement Learning
Reinforcement learning addresses the problem of learning to select actions in order to maximize one's performance inunknownenvironments. Toscale reinforcement learning to com...
Sebastian Thrun, Anton Schwartz
118
Voted
ICML
2006
IEEE
16 years 1 months ago
Learning the structure of Factored Markov Decision Processes in reinforcement learning problems
Recent decision-theoric planning algorithms are able to find optimal solutions in large problems, using Factored Markov Decision Processes (fmdps). However, these algorithms need ...
Thomas Degris, Olivier Sigaud, Pierre-Henri Wuille...
104
Voted
ICMLA
2009
14 years 10 months ago
The Neuro Slot Car Racer: Reinforcement Learning in a Real World Setting
This paper describes a novel real-world reinforcement learning application: The Neuro Slot Car Racer. In addition to presenting the system and first results based on Neural Fitted...
Tim C. Kietzmann, Martin Riedmiller
145
Voted
ABIALS
2008
Springer
15 years 2 months ago
Anticipatory Learning Classifier Systems and Factored Reinforcement Learning
Factored Reinforcement Learning (frl) is a new technique to solve Factored Markov Decision Problems (fmdps) when the structure of the problem is not known in advance. Like Anticipa...
Olivier Sigaud, Martin V. Butz, Olga Kozlova, Chri...
108
Voted
IROS
2008
IEEE
125views Robotics» more  IROS 2008»
15 years 7 months ago
Dynamic correlation matrix based multi-Q learning for a multi-robot system
—Multi-robot reinforcement learning is a very challenging area due to several issues, such as large state spaces, difficulty in reward assignment, nondeterministic action selecti...
Hongliang Guo, Yan Meng